
Advanced Mathematical Models & Applications

Vol.6, No.1, 2021, pp.22-30

SOLITON SOLUTIONS OF HIROTA EQUATION ANDHIROTA-MACCARI

SYSTEM BY THE

(
m+

1

G′

)
-EXPANSION METHOD

Hasan Bulut∗, Ayse Nur Akkilic, Ban Jamal Khalid

Firat University, Elazığ, Turkey

Abstract. In this paper, the

(
m+

1

G′

)
-expansion method is presented to seek the exact wave solutions of some

nonlinear partial differential equations (NLPDEs), namely, the Hirota equation and the Hirota-Maccari system.

The obtained solutions are solitary, topological, singular solitons and exponential function solutions. The 3D and

2D surfaces are also plotted for obtained solutions. This method is powerful, effective and it can be extended to

many NLPDEs.
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1 Introduction

In science, many important phenomena can be described by nonlinear partial differential equa-
tions. Seeking the exact solutions for these equations plays an important role in the study
on the dynamics of those phenomena which appear in various scientific and engineering fields,
such as solid-state physics, fluid mechanics, chemical kinetics, plasma physics, population mod-
els, and nonlinear optics (Gray & Scott, 1990; Ablowitz & Clarkson, 1991; Vakhnenko et al.,
2003; El-Borai, 2008; El-Borai et al., 2011; Zayed & Arnous, 2012b; Hirota, 1980; Wang & Li,
2005; Wang & Zhang, 2005; Jawad et al., 2010; Zayed & Arnous, 2012a; Wang et al., 2008; Liu,
2006; Mirzazadeh et al., 2015a,b; Ismael et al., 2020; El-Borai et al., 2016; Demiray et al., 2016;
Eslami et al., 2015; Yokus et al., 2018; Bulut & Khalid, 2020; Yokus et al., 2020; Ali et al.,
2020). Many powerful methods have been proposed to obtain exact and approximated solutions
of these models such as inverse scattering method Ablowitz & Clarkson (1991); Vakhnenko et al.
(2003), Hirota bilinear transformation Hirota (1980), the f-expansion method Zayed & Arnous
(2012a); Wang et al. (2008); Liu (2006), the modified simple equation method Jawad et al.
(2010); Zayed & Arnous (2012a), the (G′/G)-expansion method Wang et al. (2008); Yokus et al.
(2020), the (1/G′)-expansion method Ali et al. (2020), the trial equation method Liu (2006);

Mirzazadeh et al. (2015a) and the

(
m+

G′

G

)
−expansion method Ismael et al. (2020). In the

present work, we use the

(
m+

1

G′

)
-expansion method method for seeking the exact solutions

for two important physical models, firstly the Hirota equation is given by, El-Borai et al. (2016)

iut + uxx + 2|u|2u+ iαuxxx + 6iα|u|2ux = 0. (1)
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which describe the propagation of the femto-second soliton pulse in the single-mode fibers, where
u = u(x, t) is the complex amplitude of the slowly varying optical field, the subscripts t and x
indicate the temporal and spatial partial derivatives and α is small parameter.

Secondly, the Hirota-Maccari System is given by Demiray et al. (2016); Eslami et al. (2015)

iut + uxy + iuxxx + uv − i|u|2ux = 0,

3vx +
(
|u|2
)
y
= 0.

(2)

where u = u(x, y, t) and v = v(x, y, t) represent the complex scalar field and the real scalar field,
respectively, while t represents the temporal variable x, y are the independent spatial variables.

2 The
(
m+ 1

G′

)
-expansion Method

Consider the general form of NPDEs (Nonlinear partial differential equations) as

P (uyy, uxuxz, uxt, uxxxz, ...) = 0. (3)

and using wave transformation

ϕ (x, y, z, t) = U (ξ) , ξ = c1x+ c2y + c3z + c4t, (4)

where ci ̸= 0, (i = 1, 2, 3, 4). Using Eq. (4) to Eq. (3) yields a nonlinear ODE for U (ξ)

O
(
U ′′, U ′U ′′, U (4), ...

)
= 0. (5)

The solution of Eq. (5) is assumed to have the form

U (ξ) =

n∑
i=−n

ai(m+ F )i = a−n(m+ F )−n + ...+ a0 + a1 (m+ F )+...+ an(m+ F )n, (6)

where ai, ( i = 0, 1, ..., n) are constants, m is nonzero constant. According to the balancing
principle, we find the value of n. Let F is defined as below

F =
1

G′ (ξ)
, (7)

and G′ = G′ (ξ) provides the following second order ODE

G′′ + (λ+ 2mµ)G′ + µ = 0, (8)

where λ and µ are constants to be determined after. Putting the Eq. (6) to Eq. (5) and using
Eq. (7), then collect all terms with the same order of the (m+ F )n, we get the system algebraic
equations for ci ̸= 0, (i = 1, 2, 3, 4), ai, ( i = 0, 1, ..., n), µ and λ.

As a result, we solve the obtained system to find the value of ci ̸= 0, (i = 1, 2, 3, 4) and
ai, ( i = 0, 1, ..., n) and inserting them into Eq. (6), we can study the explicit and exact solution
of Eq. (3).

3 Applications of the
(
m+ 1

G′

)
-expansion Method

In this section, we implement the

(
m+

1

G′

)
-expansion method to solve the presented models:
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3.1 Hirota Equation

Putting the wave transformation

u(x, t) = U(ξ)eiθ, ξ = x+ wt, θ = px+ qt. (9)

we get the following two ordinary differential equations, respectively, real part and imaginary
part of Eq. (1):

(p3α− p2 − q)U(ξ) + (1− 3αp)U ′′(ξ) + (2− 6αp)U3(ξ) = 0, (10)

(w + 2p− 3αp2)U ′(ξ) + αU ′′′(ξ) + 6αU2(ξ)U ′(ξ) = 0, (11)

and constraint condition is

w =
α(p3α− p2 − q)

1− 3αp
+ 3αp2 − 2p. (12)

We can decide that

U ′′(ξ) +

(
p3α− p2 − q

1− 3αp

)
U(ξ) + 2U3(ξ) = 0. (13)

Balancing between the terms U3 and U ′′, we get n = 1. Later then considering Eq. (6) solutions,

U (ξ) = a−1(m+ F )−1 + a0 + a1(m+ F )1. (14)

Substitution Eq. (14) into Eq. (13) by matching the coefficients (m+ 1/G′ ) to zero, we get a
system of equations. Solve the obtained system of equations, we can get the following cases of
solutions.

Case 1. When we choose,

a−1=im (λ+mµ) , a0 = − iλ

2
, a1 = 0, α =

2p2 + 2q + (λ+ 2mµ)2

p
(
2p2 + 3(λ+ 2mµ)2

) , (15)

we get

u(x, t) = −1

2
iei(qt+px)

λ− 2m (λ+mµ)

m+ 1
A1K− µ

λ+2mµ

 ,

K = e
−

(λ+2mµ)(4p4t+4p3x+6px(λ+2mµ)2−4p2t(−3q+(λ+2mµ)2)+t(λ+2mµ)2(2q+(λ+2mµ)2))
2p(2p2+3(λ+2mµ)2) .

(16)

Figure 1: 3D surface and 2D surfaces of Eq. (16) when A1 = −1, p = 1.3, q = 0.5, m = 0.2,
λ = 0.5, µ = 1.5 and for t = 1.
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Case 2. When we choose,

a−1 = 0, a0 =
imµ

2
, a1 = −iµ, q = p2 (−1 + pα) +

1

2
m2 (−1 + 3pα)µ2, λ = −mµ (17)

we get,

u(x, t) =
ie

1
2
i(2p(x+pt(−1+pα))+m2t(−1+3pα)µ2)m

(
em(x+pt(−2+3pα))µ+ 1

2
m3tαµ3

+A1m
)
µ

2
(
em(x+pt(−2+3pα))µ+ 1

2
m3tαµ3 −A1m

) . (18)

Figure 2: 3D surface and 2D surfaces of Eq. (18) when A1 = −1, p = 1.5, α = 1.2, m = 0.6,
µ = 1, and for t = 1.

Case 3. When we choose,

a−1 =
m
√
−
(√

q − 2mµ
)2 (√

q −mµ
)

√
q − 2mµ

, a0 = −1

2

√
−(

√
q − 2mµ)2, a1 = 0,

λ =
√
q − 2mµ, p = i

√
3

2

√
q,

(19)

we get,

u(x, t) =
1

2
e
iqt−

√
3
2

√
qx
√
−(

√
q − 2mµ)2

−1 +
2m
(√

q −mµ
)

(√
q − 2mµ

)(
m+ 1

A1ei
√
6qt−√

qx+4q3/2tα− µ√
q

)
 .

(20)

Figure 3: 3D surface and 2D surfaces of Eq. (20) when A1 = −1.5, q = −2, m = 0.025, µ = 1.08,
α = 2.5 and for t = 1.

25



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.6, N.1, 2021

3.2 Hirota-Maccari system

Putting the wave transformation

u(x, y, t) = U(ξ)eiθ, v(x, y, t) = V (ξ), ξ = δ(x+ y − κt), θ = ax+ by + rt, (21)

into Eq. (6) and Eq. (7), the result yields the following nonlinear ordinary differential equation
NODE

(3a− 1)U3 + 3
(
a3 − ab− r

)
U + 3δ2 (1− 3a)U ′′ = 0, V +

U2

3
= 0, (22)

and the constraint condition is

κ =
(a+ b− 3a2)(1− 3a)−

(
a3 − ab− r

)
1− 3a

(23)

where a, b, r, δ are constants and a ̸= 1
3 .

Balancing between the terms U3 and U ′′ we get n = 1. Using the value of balance, Eq. (6)
become

U (ξ) = a−1(m+ F )−1 + a0 + a1(m+ F )1. (24)

Substitution Eq. (24) into Eq. (22) by matching the coefficients (m+ 1/G′ ) to zero, we get a
system of equations. Solve the obtained system of equations, we can get the following cases of
solutions.

Case 1. When we choose,

a0 =

√
3

2
αδλ, a1 =

√
6αδµ, a−1 = 0, b =

2a3 − 2r + 3aα2δ2(λ+ 2mµ)2 − αβδ2(λ+ 2mµ)2

2a
,

(25)
we get,

u (x, y, t) =

√
3

2
ei(rt+ax+by)αδ (λ+ 2µ (m+K)) ,

v (x, y, t) = −1

2
αβδ2(λ+ 2µ (m+K))2,

K =
λ+ 2mµ

−µ+A1e

(
xα+yβ−t

(
−3a2α+bα+

(a3−ab−r)α2

3aα−β
+aβ

))
δ(−λ−2mµ)

(λ+ 2mµ)

.

(26)

Figure 4: The 3D surfaces of Eq. (26) while δ = 1, c = 2, a = 1, r = 1, λ = 3, µ = −1, κ = 1,
α = 1, β = 2, m = 1, A1 = 1 and for t = 2.
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Case 2. When we choose,

a0 = 0, a1 = −
√
3
√
(−a3 + ab+ r)α

2
√

m2 (3aα− β)
, a−1 = −

√
3m2

√
(−a3 + ab+ r)α

2
√
m2 (3aα− β)

,

δ =

√
−a3 + ab+ r

2
√
2
√

m2α (3aα− β)µ2
, λ = 0,

(27)

we get,

u (x, y, t) = ei(rt+ax+by)

(
−
√
3m2

√
(−a3 + ab+ r)α

B
− C

2
√
m2 (3aα− β)

)

B = 2
√

m2 (3aα− β)

m+
2mµ

−µ+ 2A1e
−

m
√

−a3+ab+r

(
xα+yβ−t

(
−3a2α+bα+aβ− (a3−ab−r)α2

−3aα+β

))
µ

√
2
√

m2α(3aα−β)µ2 mµ

 ,

C =
√
3
√

(−a3 + ab+ r)α

m+
2mµ

−µ+ 2A1e
−

m
√

−a3+ab+r

(
xα+yβ−t

(
−3a2α+bα+aβ− (a3−ab−r)α2

−3aα+β

))
µ

√
2
√

m2α(3aα−β)µ2 mµ

 ,

v (x, y, t) =

β

(
−

√
3m2

√
(−a3+ab+r)α

D − E

2
√

m2(3aα−β)

)2

3α
,

D = 2
√

m2 (3aα− β)

m+
2mµ

−µ+ 2A1e
−

m
√

−a3+ab+r

(
xα+yβ−t

(
−3a2α+bα+aβ− (a3−ab−r)α2

−3aα+β

))
µ

√
2
√

m2α(3aα−β)µ2 mµ

 ,

E =
√
3
√

(−a3 + ab+ r)α

m+
2mµ

−µ+ 2A1e
−

m
√

−a3+ab+r

(
xα+yβ−t

(
−3a2α+bα+aβ− (a3−ab−r)α2

−3aα+β

))
µ

√
2
√

m2α(3aα−β)µ2 mµ

 .

(28)

Case 3. When we choose,

a0 =

√
3λ

√
a
(
−a3 + ab+ r

)
αµ2

3aα− β

µ
√

a(λ+ 2mµ)2
, a1 =

2
√
3
√

a(−a3+ab+r)αµ2

3aα−β√
a(λ+ 2mµ)2

, a−1 = 0,

δ =

√
2
√
−a3 + ab+ r√

α (3aα− β) (λ+ 2mµ)2
,

(29)
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Figure 5: 3D graphs for Eq. (28) while b = 1, a = 3.5, r = 2, µ = 2, α = 1.5, β = 0.5,
m = 4, A1 = 1.2, and for t = 1.6.

we get,

u (x, y, t) =
√
3ei(rt+ax+by)

√
−a(a3−ab−r)αµ2

3aα−β√
a(λ+ 2mµ)2

λ

µ
+ 2

m+
λ+ 2mµ

−µ+A1e

√
2
√

−a3+ab+r

(
xα+yβ−t

(
−3a2α+bα+

(a3−ab−r)α2

3aα−β
+aβ

))
(−λ−2mµ)

√
α(3aα−β)(λ+2mµ)2 (λ+ 2mµ)




v (x, y, t) =

(
a3 − ab− r

)
β

(3aα− β) (λ+ 2mµ)2λ+ 2µ

m+
λ+ 2mµ

−µ+A1e

√
2
√

−a3+ab+r

(
xα+yβ−t

(
−3a2α+bα+

(a3−ab−r)α2

3aα−β
+aβ

))
(−λ−2mµ)

√
α(3aα−β)(λ+2mµ)2 (λ+ 2mµ)




2

.

(30)

Figure 6: 3D graphs for Eq. (30) while δ = 1, c = 2, a = 1, r = 1, λ = 3, µ = 1, κ = 1,
α = 1, β = 2, m = 1, A1 = 1, b = 1 and for t = 2.
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4 Conclusion

In this paper, we successfully applied the proposed by the analytical method to solve the Hirota
equation and the Hirota-Maccari system. As a result of these applications different types of
solutions are obtained such as exponential function solutions, solitary, topological, and singular
soliton solutions. The constraint conditions for the existence of these solutions are given. The
3D and 2D surfaces are also plotted for obtained solutions.
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